442 research outputs found

    Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97

    Get PDF
    peer-reviewedStaphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup

    Characterisation of Australian MRSA Strains ST75- and ST883-MRSA-IV and Analysis of Their Accessory Gene Regulator Locus

    Get PDF
    Background: Community-acquired methicillin-resistant Staphylococcus aureus have become a major problem in Australia. These strains have now been isolated throughout Australia including remote Indigenous communities that have had minimal exposure to healthcare facilities. Some of these strains, belonging to sequence types ST75 and ST883, have previously been reported to harbour highly divergent alleles of the housekeeping genes used in multilocus sequence typing. Methodology/Principal Findings: ST75-MRSA-IV and ST883-MRSA-IV isolates were characterised in detail. Morphological features as well as 16S sequences were identical to other S. aureus strains. Although a partial rnpB gene sequence was not identical to previously known S. aureus sequences, it was found to be more closely related to S. aureus than to other staphylococci. Isolates also were screened using diagnostic DNA microarrays. These isolates yielded hybridisation results atypical for S. aureus. Primer directed amplification assays failed to detect species markers (femA, katA, sbi, spa). However, arbitrarily primed amplification indicated the presence of unknown alleles of these genes. Isolates could not be assigned to capsule types 1, 5 or 8. The allelic group of the accessory gene regulator (agr) locus was not determinable. Sequencing of a region of agrB, agrC and agrD (approximately 2,100 bp) revealed a divergent sequence. However, this sequence is more related to S. aureus agr alleles I and IV than to agr sequences from other Staphylococcus species. The predicted autoinducing peptide (AIP) sequence of ST75 was identical to that of agr group I, while the predicted AIP sequence of ST883 was identical to agr group IV. Conclusions/Significance: The genetic properties of ST75/ST883-MRSA may be due to a series of evolutionary events in ancient insulated S. aureus strains including a convergent evolution leading to agr group I- or IV-like AIP sequences and a recent acquisition of SCCmec IV elements

    Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, “Bengal Bay Clone”

    Get PDF
    Background: The PVL-positive ST772-MRSA-V is an emerging community-associated (CA-) MRSA clone that has been named Bengal Bay Clone since most patients have epidemiological connections to the Indian subcontinent. It is found increasingly common in other areas of the world. Methods: One isolate of ST772-MRSA-V was sequenced using the Illumina Genome Analyzer System. After initial assembling the multiple sequence contigs were analysed using different in-house annotation scripts. Results were compared to microarray hybridisation results of clinical isolates of ST772-MRSA-V, of related strains and to another ST772-MRSA-V genome sequence. Results: According to MLST e-burst analysis, ST772-MRSA-V belongs to Clonal Complex (CC)1, differing from ST1 only in one MLST allele (pta-22). However, there are several additional differences including agr alleles (group II rather than III), capsule type (5 rather than 8), the presence of the egc enterotoxin gene cluster and of the enterotoxin homologue ORF CM14 as well as the absence of the enterotoxin H gene seh. Enterotoxin genes sec and sel are present. ST772-MRSA-V harbours the genes encoding enterotoxin A (sea) and PVL (lukS/F-PV). Both are located on the same prophage. Conclusions: ST772-MRSA-V may have emerged from the same lineage as globally spread CC1 and CC5 strains. It has acquired a variety of virulence factors, and for a CA-MRSA strain it has an unusually high number of genes associated with antibiotic resistance

    Increased EMRSA-15 health-care worker colonization demonstrated in retrospective review of EMRSA hospital outbreaks

    Get PDF
    Background:Health care worker (HCW) colonization with methicillin resistant Staphylococcus aureus (MRSA) is a documented cause of hospital outbreaks and contributes to ongoing transmission. At Royal Perth Hospital (RPH) it had been anecdotally noted that the increasing prevalence of EMRSA-15 appeared to be associated with increased HCW colonization compared with Aus2/3-EMRSA. Hence we compared HCW colonization rates during outbreaks of EMRSA-15 and Aus2/3-EMRSA at a single institution.Methods:We performed a retrospective review of EMRSA-15 and Aus2/3-EMRSA outbreaks from 2000 –2009 at RPH, a quaternary hospital in Western Australia. Outbreak files were reviewed and relevant data extracted. Results:Ten EMRSA-15 outbreaks were compared with seven Aus2/3 outbreaks. The number of patients colonized was similar between EMRSA-15 and Aus2/ 3-EMRSA outbreaks (median 7 [range 3 – 20] and 11 [5 – 26], respectively; P = 0.07) but the number of HCWs colonized was significantl y higher in EMRSA-15 outbreaks compared to Aus2/3-EMRSA outbreaks (median 4 [range 0 – 15] and 2 [1-3], respectively; P = 0.013). The percentage of HCWs colonized was also higher in EMRSA-15 outbreaks versus Aus2/3-EMRSA outbreaks (median 3.4% [range 0 – 5.5%] and 0.81% [0.56 – 2.2%], respectively; P= 0.013).Conclusions:This study demonstrates a higher level of HCW colonization during EMRSA-15 outbreaks compared with Aus2/3-EMRSA outbreaks. This finding suggests that MRSA vary in their ability to colonize HCWs and contribute to outbreaks. MRSA type should be determined during outbreaks and future research should investigate the mechanisms by which EMRSA-15 contributes to increased HCW colonization

    Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids

    Get PDF
    Information about livestock carrying methicillin-resistant coagulase-negative staphylococci and mammaliicocci (MRCoNS/MRM) is scarce. The study was designed to gain knowledge of the prevalence, the phenotypic and genotypic antimicrobial resistance and the genetic diversity of MRCoNS/MRM originating from ruminants and New World camelids. In addition, a multi-locus sequence typing scheme for the characterization of Mammaliicoccus (formerly Staphylococcus) sciuri was developed. The study was conducted from April 2014 to January 2017 at the University Clinic for Ruminants and the Institute of Microbiology at the University of Veterinary Medicine Vienna. Seven hundred twenty-three nasal swabs originating from ruminants and New World camelids with and without clinical signs were examined. After isolation, MRCoNS/MRM were identified by MALDI-TOF, rpoB sequencing and typed by DNA microarray-based analysis and PCR. Antimicrobial susceptibility testing was conducted by agar disk diffusion. From all 723 nasal swabs, 189 MRCoNS/MRM were obtained. Members of the Mammaliicoccus (M.) sciuri group were predominant (M. sciuri (n = 130), followed by M. lentus (n = 43), M. fleurettii (n = 11)). In total, 158 out of 189 isolates showed phenotypically a multi-resistance profile. A seven-loci multi-locus sequence typing scheme for M. sciuri was developed. The scheme includes the analysis of internal segments of the house-keeping genes ack, aroE, ftsZ, glpK, gmk, pta1 and tpiA. In total, 28 different sequence types (STs) were identified among 92 selected M. sciuri isolates. ST1 was the most prevalent ST (n = 35), followed by ST 2 (n = 15), ST3 and ST5 (each n = 5), ST4 (n = 3), ST6, ST7, ST8, ST9, ST10 and ST11 (each n = 2)

    Emergence of novel methicillin resistant Staphylococcus aureus strains in a tertiary care facility in Tiyadh, Saudi Arabia

    Get PDF
    Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin

    Get PDF
    Staphylococcus aureus can be a harmless coloniser, but it can also cause severe infections in humans, livestock and wildlife. Regarding the latter, only few studies have been performed and knowledge on virulence factors is insufficient. The aim of the present study was to study S. aureus isolates from deceased wild beavers (Castor fiber). Seventeen isolates from eleven beavers, found in Germany and Austria, were investigated. Antimicrobial and biocide susceptibility tests were performed. Isolates were characterised using S. aureus-specific DNA microarrays, spa typing and whole-genome sequencing. From two isolates, prophages were induced by mitomycin C and studied by transmission electron microscopy. Four isolates belonged to clonal complex (CC) 8, CC12, and CC398. Twelve isolates belonged to CC1956 and one isolate was CC49. The CC49 and CC1956 isolates carried distinct lukF/S genes related to the Panton-Valentine leukocidin (PVL) from human isolates of S. aureus. These genes were located on related, but not identical, Siphovirus prophages. The beavers, from which those isolates originated, suffered from abscesses, purulent organ lesions and necrotising pneumonia, i.e., clinical manifestations resembling symptoms of severe PVL-associated disease in humans. It might thus be assumed that the “Beaver Leukocidin (BVL, lukF/S-BV)”-positive strains are beaver-specific pathogens, and further studies on their clinical role as well as on a possible transmissibility to other species, including humans, are warranted
    corecore